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Abstract   Analysis of analog filter of fractional order is the main objective of this paper. The basics of fractance device are 

studied. Rational approximation of fractional order operator using continued fraction expansion is carried out. Analytical 

expressions of the differentiator operator for different input signals have been developed and simulated in MATLAB 

software and corresponding simulation results are shown for different orders of differentiation. Fractional order filter is 

studied and performance of the fractional order filter is checked for different input signals (sine wave, trapezoidal wave, 

sawtooth wave and chirp signal) with random noise and simulated in MATLAB software and the resulted output is 

compared with the integer order filter output.  
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I. INTRODUCTION 

 
In recent years it has turned out that many phenomena in 

engineering, physics, chemistry, and other sciences can be 

described very successfully by models using mathematical 

tools from fractional calculus [1]. To obtain better 

performance, in last few decades, several applications based 

on fractional order modeling in wide spread fields of science 

and engineering have been proposed. This includes fluid 

flow, optics, geology, behavior of visco-elastic material, 

bioscience, medicine, non-linear control, signal processing, 

etc [2].  

        Fractional calculus is three centuries old as the 

conventional calculus. All of us are familiar with normal 

derivatives and integrals, like, df/dt, d
2
f/dt

2
, . We 

have first-order, second order derivatives, or first integral, 

double integral, of a function. Now we wish to  

have half order, 
th

order, or derivative of a function. So, 

fractional calculus is equal to derivatives and integrals of 

arbitrary real or complex order.          Fractional-order 

calculus is an area of mathematics that deals with 

derivatives and integrals from non-integer orders. In other 

words, it is a generalization of the traditional calculus that 

leads to similar concepts and tools, but with a much wider 

applicability. fundamental operator aD
α

t α ∈ R, where a and t 

are the limits and α is the order of the operation [3]. 

 

aD
α

t                                                        (1)  

 

 

Some special functions used in fractional calculus are 

Gamma Function, Beta Function, and Mittag-Leffler 

Function [4]. 
      The paper is organized as follows: In section-2, the study 

of fractance device is presented. In section-3 rational 

approximation of fractional order operator using different 

methods (Newton, Mastuda, Oustaloup and CFE method) is 

presented and compared with the ideal response. Analytical 

expressions of the differentiator operator for different input 

signals have developed and corresponding simulation results 

have been shown for different orders of differentiation. In 

section-4 fractional order filter is studied and performance 

of the fractional order filter is checked for different input 

signals (sine wave, trapezoidal wave, sawtooth wave and 

chirp signal) with random noise and the resulted output is 

compared with the integer order filter output.Section-5 

presents conclusion. 

 

1.1 Fractional Differ Integral Definitions 

1.1.1 Grunwald-Letnikov, Riemann-Liouville and Caputo 

Definitions      

   There are two main approaches for defining a fractional 

derivative. The first considers differentiation and integration 

as limits of finite differences. The Grunwald-Letnikov 

definition follows this approach. The other approach 

generalizes a convolution type representation of repeated 

integration. The Riemann-Liouville and Caputo definitions 

take this approach. Riemann-Liouville and Caputo fractional 
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derivatives are fundamentally related to fractional 

integration operators. Consequently, the initial conditions of 

fractional derivatives are the frequency distributed and 

infinite dimensional state vector of fractional integrators. 

 

1.1.2    Grunwald-Letnikov Definition      

  The Grunwald-Letnikov approach presents limit definitions 

for higher order derivatives and integrals and shown that [5] 

 

aD
α

tf(t) =         (2) 

 
where h is the time increment. 

 

1.1.3 Riemann-Louville Definition    

 Riemann-Louville approach generalizes a convolution type 

representation of repeated integration and given by [5] 

  

aD
α

tf(t) = (d/dt)
n α-n+1

,  

          

                      (n-1 ≤ α < n)                                      (3) 

 

where Г is the Euler’s gamma function.  

 

1.1.4    Caputo Fractional Derivative     

     The Caputo definition of fractional differentiation of 

fractional order α, can be written as [5] 

                                         

  D
α

*f(t) =J
m-α

D
m
f(t)  

 

                   with    m-1<α≤m,  

                                                                                 (4) 

D
α

*f(t)                                              

 

where Г is the Euler’s Gamma function. 

 

 

 

II. FRACTANCE DEVICE 

 

Fractance device is an electrical element which exhibits 

fractional order impedance properties. The impedance of the 

fractance device is defined as. 

 

Z(jω) =(jω)
α
                                                           (5)               

                              
where ω is the angular frequency and α takes the values as 

−1, 0, 1 for capacitance, resistance, and the inductance, 

respectively. Fractance device finds applications in robotics, 

hard disk drives, signal processing circuits, fractional order 

control, and so forth [6].  

        The Curie law is as follows. Suppose that the voltage 

v(t) =Uu(t) is applied to a capacitor possessing no initially 

stored charged. That is, there is no energy stored in the 

device before applying the DC voltage U. The current 

through the device will have the general form [7] 

 

 

i(t) =      for t>0 and 0<α<1                                (6)                                              

(h and U are real-valued). This is a power law dependence 

of terminal current upon the input voltage. The Laplace 

transform of the input voltage is 

 

 v(s) =                                                                    (7)                                                                        

 However, the Laplace transform of i(t) is 

 

 i(s) =                                                            (8)                                                                    

 

Here Г(x) is the gamma function. Normally, the impedance 

of a two-terminal linear time-invariant (LTI) circuit element 

is defined to be 

                                                         

 z(s) =                                                                  (9)                                                                   

 
For the Curie law device of (6) from (9) it can be seen 

 

z(s) =                                                         (10)                                                          

 

 

In (10) 0 < α< 1 and so (10) is a considered a fractional 

impedance, or fractance for short.  

        The following are some of the important points about 

fractance device: 

 (i) The phase angle is constant with frequency but depends 

only on the value of fractional order, α. Hence this device is 

also called as constant phase angle device or simply fractor. 

(ii) Moderate characteristics between inductor, resistor, and 

capacitor can be obtained using fractance device. 

(iii) By making use of an operational amplifier, a fractional 

order differentiation and integration can be accomplished 

easily. 

        Design of fractance having given order α can be done 

easily using any of the rational approximations or a 

truncated continued fraction expansion (CFE), which also 

gives a rational approximation. Truncated CFE does not 

require any further transformation; a rational approximation 

based on any other methods must be first transformed to the 

form of a continued fraction; then the values of the electrical 

elements, which are necessary for building a fractance, are 

determined from the obtained finite continued fraction. 
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III. RESULTS AND DISCUSSION 

 
3.1 Implementation of Fractional Order Differentiator 

Operator s
0.5   

 

     The output of fractional order differentiator is such that 

the order of the differentiation of input signal may be either 

real or complex i.e. the power of the s (in the Laplace 

domain) is arbitrary instead of integer only as in case of 

conventional differentiator. The fractional order 

differentiators or integrators are defined, in the Laplace 

domain, by the following transfer function  

 
 

H(s)=s
α 

                                                                    (11) 

                                                                                  
where s is the Laplace operator. 

        By making use of well known Regular Newton 

Process, Carlson and Halijak have obtained rational 

approximation of 1/√s as[8]  

 
 

H(s) =                                   (12)                                                          
 

 

By approximating an irrational function with rational one, 

and fitting the original function in a set of logarithmically 

spaced points, Mastuda has obtained rational approximation 

of 1/√s [9] 

  

 H(s) =    

                                                                               (13)                                                  

 

Oustaloup has approximated the fractional differentiator 

operator s
α
 by a rational function and derived the following 

approximations [10] 

 

                              1/√s=        

                                                                       

                                                                               (14)                                      

                                                   

√s=      

  

                                                                               (15)  

                                         

3.2   Continued Fraction Expansion      

   It is known that the continued fraction expansion for (1 + 

x)
α
 as [11] 

 

 (1+x)
α
=       

                                                                               (16)                              

The above continued fraction expansion converges in the 

finite complex s-plane, along the negative real axis from x= 

−∞ to x = −1. Substituting x = s − 1 and taking number of 

terms of equation, the calculated rational approximations for 

√s are presented in Table 1. 

Figures 1(a) and 1(b) compare the magnitude and phase 

responses of the rational approximations with the ideal one 

[12]. 

                                           
TABLE 1: Rational approximations for   

 

S.No     No. of terms       Rational approximation 
 

 

1               2                                  

 

2               4                                

                                                              

3  

 

4            8               

 
                                                                   

 

 

 
(a) 

 
 (b) 

Figure1. Comparison of magnitude and phase responses of rational 

approximation functions with ideal √s. 
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3.3 Rational Approximations for s
α 

  

  Fractional order systems are systems that are described by 

fractional differential equations in which the integer order n 

of the derivative operator D
n
=  is generalized to real or 

complex order α, such that one can define the operator [13] 
 

 D
α
=                                          (17) 

                                                           
Among existing fractional systems, we find the fractance 

device, PI
λ
D

β 
controller, fractional order differentiators or 

integrators. The fractional order differentiators or integrators 

are defined, in the Laplace domain, by the following transfer 

function 

 

H(s)=s
α                                                                                                             

(18)
                                                                                         

 
 

 
where  s is the Laplace  operator. These systems are used to 

calculate the fractional order time derivative and integral  of 

an input signal.  They find applications in many fields of 

science and engineering particularly in control and signal 

processing. However, such systems   have Unlimited 

memory, thus they cannot be implemented exactly. Many 

algorithms have been developed to best approximate the 

fractional order operator s
α
 with analogue or digital integer 

models. Fractional order elements are the building blocks 

for the fractional order system theory, control and signal 

processing. The only problem with fractional order elements 

is its hardware realization   due   to   its   infinite  

dimensional nature.  In practice, factional order  

elements can be approximated as higher order rational 

transfer functions which have a constant phase curve within 

a certain frequency band. The fractional order elements can 

be rationalized  

as analog filters by various iterative techniques like 

Carlson’s, Oustaloup’s, Charef’s and CFE (continued 

fraction expansion) method etc. The rational approximations 

obtained for s
α
 represented in Table 2. The following plots 

from Figures 2(a) to 2(g) compare the magnitude and phase 

responses for s
α
 obtained using CFE  method for different 

values of α.       
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TABLE 2: Rational approximations for   using continued fraction expansion  

 

 No. of terms                                                                                              Rational Approximation 

 

 

 2                                                                                                                 

 

 4                                                                                                     

 

 6  

 

 

 8                                               

                                                                                                                         where  p0= q4= 4+10 3+35 2+50 +24 

                                                                                                                                     p1= q3= -4 4-10 3+40 2+320 +384 

                                                                                                                                     p2= q2= 6 4-1 50 2+864 

                                                                                                                                     p3= q1= -4 4+20 3+40 2-320 +384 

                                                                                                                                     p4= q0= 4-10 3+35 2-50 +24 

 

    

  10                              

                                                                                                      where  p0= q5= - 4-85 3-225 2-274 -120 

                                                                                                                                              p1= q4= 5  45 4+5 3-1005 2-3250 -3000 

                                                                                                                  p2= q3= -10 -30 4+410 3+1230 2-4000 -12000 

                                                                                                                  p3= q2= 10 -30 4-410 3+1230 2+4000 -12000 

                                                                                                                                              p4= q1= - 5  45 4-5 3-1005 2+3250 -3000 

                                                                                                                  p5= q0= 4+85 3-225 2+274 

 

 
 

 

 

        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

(a)  
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(b) 

 

 

 
 

 
 

(f) 

 

 
 

 

 
(c) 

 

 

 
 

(d) 

 

 
(e) 

(g) 

 

 
Figure 2. Comparison of magnitude and phase responses of rational 

approximation functions with ideal s
α
, where α is order of the operator for 

figure (a) to (g) α = 0.2, 0.3 0.4, 0.6, 0.7, 0.8, and 0.9 respectively. 

 

 
 

3.4  Time-Domain Response of s
α
 Operator 

The time domain response of s
α
 differentiator operator is 

simulated in MATLAB. The performance of the fractional 

order operator is checked by giving different input signal 

(impulse, step, sine, and cosine input) as input of fractional 

order operator and  for different values of α (0.1 to 0.9). 
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3.4.1 Response with impulse input 

 
 

 

 

 
Let the input to the fractional order operator s

α
, i(t) = δ(t) 

[14] 

In the Laplace domain 

 

I(s) = 1, 
Output in the Laplace domain, P(s) and time domain 

response of above system can be written as  

 

 p(t) = L
-1

(I(s)*s
α
) 

 

 p(t) =                                                            (19)  

 

The response of s
α  

 with impulse input is shown in Figure3 

for different values of α.                                                                     

 
3.4.2 Response with unit step input  
 

 

         

 
Let the input to the fractional order operator s

α
, i(t) = u(t) 

In the Laplace domain 

                                                                  

I(s) = , 

 

Output in the Laplace domain, P(s) and time domain 

response of above system can be written as 

 

 p(t) = L
-1

(I(s)*s
α
) 

 

 p(t) =                                                           (20)    

 

The response of s
α 

 with unit step input is shown in Figure4 

for different values of α.                                                                     

                                               

 

3.4.3 Response with sine input 
 

 

 

                         

 
Let the input to the fractional order operator s

α
, 

 

 i(t) =Asinωt 

In the Laplace domain 

 

 I(s) = , 

 

Were A=1, amplitude of sine wave. 

       Time domain response of above system can be written 

 

 p(t) = L
-1

(I(s)*s
α
) 

 

p(t)=Aω* E*2,2- α(ω
2
*t

2
)                         (21)      

The response of s
α  

 with sine wave is shown in Figure5 for 

different values of α.                                                                     

                                           

 
3.4.4 Response with cosine Input 

 
 

         

 

 

 
Let the input to the fractional order operator s

α
, i(t)=Acosωt 

In the Laplace domain 

 

I(s) = , 

 

Were A=1, amplitude of cosine wave. 

          Output in the Laplace domain, P(s) and time domain 

response of above system can be written as 

 

 p(t) = L
-1

(I(s)*s
α
) 

 

 p(t)=Aω* E*2,1- α(-ω
2
*t

2
)                                (22)  

 

The response of s
α 

 with cosine wave is shown in Figure6 for 

different values of α.                                                                     

 

           

 
 
Figure3. Response of the fractional order differentiator operator for 

impulse input and different values of α (0.1 to 0.9). (α is the order of 
fractional order differentiator operator) 

 

 

  s
α
    

s
α 

i(t) = δ(t)  

 
   p(t) 

   s
α     p(t) i(t)=u(t

) 

     s
α 

i(t) =Asinωt       p(t) 

   sα    p(t) i(t)=Acosω

t 
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Figure4. Response of the fractional order differentiator operator for step 

input and different values of α (0.1 to 0.9). (α is the order of Fractional 

order differentiator operator). 

 

 

 

Figure5. 
Response of the fractional order differentiator operator for sine input and 

different values of α (0.1 to 0.9). (α is the order of fractional order 

differentiator operator) 

 

 

Figure

6. Response of the fractional order differentiator operator for cosine input 

and different values of α (0.1 to 0.9). (α is the order of fractional order 

differentiator operator) 
 

 

3.5. Fractional Order Filter   
 Traditional continuous-time filters are of integer order. 

However, using fractional calculus, filters may also be 

represented by the more general fractional-order differential 

equations in which case integer-order filters are only a tight 

subset of fractional order filters. In this work, we will show 

that low-pass filters can be realized with circuits 

incorporating a single fractance device. For designing 

passive or active filter, filters necessarily incorporate 

inductors and capacitors, the total number of inductor or 

capacitor dictates the filter order. However, an inductor or 

capacitor is not but a special case of the more general so-

called fractance device; which is an electrical element whose 

impedance in the complex frequency domain is given by 

Z(jω) = (jω)
 α

 For the special case of α = 1 this element 

represents an inductor while for α = −1 it represents a 

capacitor[15]. Figures7  (a) and 1(b) shows  the integer 

order  and fractional order filter respectively.  

 

 

 

 

                                                        
     Input                                                            Output                                                                               

  

 

 
(a) 

 

 

 

 

      

 

 
    Input                                                          Output 

                                         

 

 

 

 

(b) 

                                                                                                                      
Figure7. (a) low pass filter with integer order, (b) low pass filter with 

fractance device  

 

 
3.6 Comparison of Integer Order and Fractional Order 

Filter Performance      

  The performance of fractional order filter simulated in 

MATLAB is checked by using Sine, sawtooth wave, 

trapezoidal wave with random noise as input and resulted 

output compared with the output of the integer order filter 

with same input. And for the optimization, the performance 

of the fractional order filter is checked for different values of 

α and simulation is done in MATLAB.  

 

 

    R 

C 

    R 
 

c 

    R 

 

F 
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3.6.1 Response of Fraction Order and Integer Order Filter 

for Sine Wave input with Random Noise 

 

 

 

 
(a) 

 

 

         

 

(b) α=0.55 

Figure 8. (a) Performance of integer order filter and (b) performance of 
fractional order filter for sine wave with random noise as input of filter. 

 

 
3.6.2 Response of Fraction Order and Integer Order Filter 

for Sawtooth Wave input with Random Noise  

 

 

 

                                   (a) 

 

 

                             (b) α= 0.57 

Figure 9. (a) Performance of integer order filter and (b) performance of 

fractional order filter for saw tooth wave with random noise as input of 

filter. 

 

 
 

3.6.3.Response of Fraction Order and Integer Order Filter 

for input Trapezoidal Wave with Random Noise 

 

 
(a) 

 
(b) α =0.44 

Figure10. (a) Performance of integer order filter and (b) performance of 

fractional order filter for trapezoidal wave with random noise as input of 
filter. 
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3.6.3. Response of Fraction Order and Integer Order Filter 

for input chirp signal with Random Noise 

 

 
 (a) 

 
                              (b) α =0.47 

Figure 11. (a) performance of integer order filter and (b) performance of 
fractional order filter for Chirp signal with random noise as input of filter. 

 

 

                  IV. CONCLUSION 

In this paper fractional order differential operator has been 

simulated in MATLAB for different Input signals and 

different value of α (fractional order). The simulated results 

show that the response of the system is noticeably different 

for the integer and non-integer values and it is observed that 

for gradual change of α from 0 to 1, the fractional order 

system gives the gradual change in the output response. 

Further fractional order filter is simulated in MATLAB for 

different input signals (signal with noise) and for different 

value of α (order of the operation), further compared with 

the resulted outputs of the integer order filter. So, it can be 

concluded that fractional order filter gives the better 

performance in comparison of integer order filter as  noise is 

much suppressed in case of fractional order filter as in 

integer order filter . For better results optimum value of α 

(order of operation) is taken. So it can be concluded that 

output of a fractional order system will give different result 

if it is approximated by an integer order system. It is 

expected that the work will help the researchers to 

understand fractional order system behavior in a better way. 
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